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Conditional quantum dynamics with several observers
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We consider several observers who monitor different parts of the environment of a single quantum system
and use their data to deduce its state. We derive a set of conditional stochastic master equations that describe
the evolution of the density matrices each observer ascribes to the system under the Markov approximation,
and show that this problem can be reduced to the case of a single ‘‘superobserver,’’ who has access to all the
acquired data. The key problem—consistency of the sets of data acquired by different observers—is then
reduced to the probability that a given combination of data sets will be ever detected by the superobserver. The
resulting conditional master equations are applied to several physical examples: homodyne detection of
phonons in quantum Brownian motion, photodetection and homodyne detection of resonance fluorescence
from a two-level atom. We introducerelative purityto quantify the correlations between the information about
the system gathered by different observers from their measurements of the environment. We find that observers
gain the most information about the state of the system and they agree the most about it when they measure the
environment observables with eigenstates most closely correlated with the optimally predictablepointer basis
of the system.

DOI: 10.1103/PhysRevA.69.022109 PACS number~s!: 03.65.Ta, 42.50.Lc
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I. INTRODUCTION

Information about the state of a quantum system is u
ally obtained not from direct measurements on the syst
but rather by monitoring its environment@1–3#. Therefore,
the environment is not only a reservoir that selectively
stroys quantum coherence, but also a ‘‘communication ch
nel’’ through which observers find out about the system@4#.
The formalism that ascribes to the system a time-depen
state deduced from a complete measurement of
environment—a quantum trajectory—has been introdu
some time ago@5–8#. Persistent monitoring of a quantum
system by the environment can single out a preferred se
states, known as pointer states, which are the most robu
spite of the interaction with the environment, that is, le
perturbed by it@9,10#. In Ref. @11# we showed that unde
reasonable assumptions pointer states remain the most r
even when a single observer is performing continuous qu
tum measurement on a part of the environment to ext
information about the system. Here we use the formalism
quantum trajectories@5–8# to derive a set of conditiona
master equations which describe density matrices inferre
several observers simultaneously performing measurem
on different parts of the environment. The knowledge a giv
observer has about the system, inferred from his meas
ment records, leads to his single observer density ma
One can also consider a superobserver with access to a
records of all observers. His knowledge about the system
encapsulated in a superobserver density matrix. Both den
matrices evolve according to conditional stochastic ma
equations that will be derived in the following section.

The paper is organized as follows. In Sec. II we der
conditional stochastic master equations for the situa
where multiple observers monitoring the environment o
quantum system try to infer its state from their measurem
data. Section III discusses correlations between differ
1050-2947/2004/69~2!/022109~16!/$22.50 69 0221
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measurement channels. In Sec. IV we apply the formalism
the quantum Brownian motion at zero temperature, a mo
for which coherent states are perfect pointer states. Obs
ers trying to infer the state of the oscillator, initially prepar
in a quantum superposition of states~‘‘Schrödinger cat
state’’! (uz&1u2z&)/A2 of large amplitude coherent state
eventually fully agree when they measure in a basis co
lated to the pointer states. In Secs. V and VI we consider
model of resonance fluorescence of a two-level atom,
which pointer states do not really exist, and even the m
predictable states are quite unpredictable. We discuss co
lations between single observer state assignments for di
ent measurement schemes, such as photodetection an
modyne detection. Finally, Sec. VII contains o
conclusions.

II. CONDITIONAL MASTER EQUATIONS
FOR SEVERAL OBSERVERS

Imagine a systemS coupled to an environmentE. The
state of the environment is monitored by a set of detec
$Di%( i 51, . . . ,C) in measurement basis that can be diffe
ent for different detectors. When the results of these m
surements are ignored~which in technical terms correspond
to tracing overE as well as over all the records of$Di%), the
reduced density matrix of the system%(t) evolves according
to an ‘‘unconditional’’ master equation~UME!

d%~ t !5dtL(%~ t !, ~1!

within an infinitesimal time stepdt. HereL(%(t) denotes a
linear superoperatorL acting on%. This master equation is
‘‘unconditional’’ in the sense that all the information abo
the records of$Di% has been ignored. Note that we are a
suming that this evolution is Markovian, so that the state
the system at timet1dt only depends on its state at timet.
In what fol-
©2004 The American Physical Society09-1
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lows we shall make a still stronger assumption that the s
of the fragments of the environment prior to the interact
with the system is always the same. In particular, the fr
ments of the environment that have interacted withS do not
interact with it again. This quantum Markov approximatio
is accurate in a typical scattering situation. Then there
natural distinction between input and output fields. The in
field is assumed to be always described by the same de
matrix m. The output field evolves in a way it must to a
count for its outward propagation. It is entangled with t
system, and is eventually measured sufficiently far from
system so that the detection does not disturb the system
spontaneous emission from, say, a two-level atom in f
space is a particular example of the scattering situa
where the input density matrixm is a vacuum state.

A. Multiple measurement channels

Suppose that the measurement records are not ign
but, instead, as is typically the case, they are used to ex
information aboutS. Let us further assume thatE includes
parts $Ei% numbered by the indexi ( i 51, . . . ,C) and that
such parts are coupled to the detectors$Di%. These detectors
correspond to different measurement channels. We mode
measurements by detectorDi as a projection of the detector
state in a measurement basis with outcomedNi(t). In the
example of spontaneous emission the parts$Ei% can be cho-
sen as different directions of photon emission monitored
different detectors$Di%, while dNi(t) may be the number o
photons collected by the detectori during the infinitesimal
time interval fromt to t1dt. No matter how much the mea
surement is delayed or how long it takes to decohere the s
of the detectorDi , the eventual outcomedNi(t) affects the
knowledge about the state of the system at the timet when
the environment partEi got entangled withS. In general, the
measurement basis can be nonorthogonal and/or overc
plete, but in the following, for the sake of simplicity, w
restrict ourselves to the complete orthogonal case.

We assume that att50 the state ofS was a density matrix
%(0). As time goes on, at every time stepdt the systemS is
getting entangled with a new fragment of the environmenE.
After interaction withS some of these fragments are n
detected, while some other fragments$Ei% are measured by
the detectors$Di%. After time t the initially uncorrelated state
of S1E1D evolves into an entangled staterSED(t) ~by D
we are denoting the set of detectors$Di%). Ignoring the state
of ED we get the unconditional density matrix

%~ t !5TrED rSED~ t !, ~2!

which evolves according to the UME, Eq.~1!. Let us call
Na(t)5@N1(t), . . . ,NC(t)# the set of strings of multiple
channels measurement records. That is,Na(t) is a particular
history of measurement results$dNi(t8)% on all channels till
time t, and the subscripta denotes a particular set of record
Then, the unconditional density matrix%(t) is a sum over all
possible setsNa(t), namely,

%~ t !5 (Na(t)
TrED PNa(t) rSED~ t !. ~3!
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HerePNa(t)5PN1(t) ^ •••^ PNC(t) projects the state of all de

tectors according to the measurement recordsNi(t)
( i 51, . . . ,C). Different branches of the wave function o
SED are labeled by different setsNa(t) of possible mea-
surement records. A branchNa(t) has a probability

p@Na~ t !#5TrSED PNa(t) rSED~ t !. ~4!

A hypothetical ‘‘superobserver,’’ who knows all the me
surement records of all detectors, Na(t)
5@N1(t), . . . ,NC(t)#, ascribes toS a state given by a mul-
tiple observers~or superobserver! conditional density matrix

r@Na~ t !#5
TrED PNa(t) rSED~ t !

TrS TrED PNa(t) rSED~ t !
5

TrED PNa(t) rSED~ t !

p@Na~ t !#
,

~5!

normalized so that TrSr@Na(t)#51. From the point of view
of the superobserver the set of recordsNa(t) actually hap-
pens. His description is necessarily probabilistic: att50 he
could only calculate probabilities of different outcomes@Eq.
~4!#, but could not predict his actual set of outcomesNa(t).

We assign to each measurement channeli an observeri
who knows only his own recordNi(t). He ascribes toS a
state given by a single observer conditional density matr

r@Ni~ t !#5
TrED PNi (t)

rSED~ t !

TrS TrEDPNi (t)
rSED~ t !

, ~6!

conditioned only on his own recordNi(t). It is easy to check
that the single observer density matrix is an average over
superobserver density matrices with all records that are
known to the observer i. Indeed, denoting N b

Ni (t)

5@N1(t), . . . ,Ni(t), . . . ,NC(t)# a set of strings of multiple
channel records that contain the particular recordNi(t) in
channeli, we have

r@Ni~ t !#5 (
N

b

Ni (t)

p@N b
Ni (t)# r@N b

Ni (t)#

p@Ni~ t !#
. ~7!

The probability distribution for the measurement reco
Ni(t) is given by

p@Ni~ t !#5TrSED PNi (t)
rSED~ t !5 (

N
b

Ni (t)
p@N b

Ni (t)#, ~8!

which is analogous to Eq.~4!.
The issue of compatibility of density matrices ascribed

a system by different observers was first considered
Peierls@12#. He noted that the state assignments of vario
observers cannot be arbitrarily different, and proposed t
in order to avoid contradiction between different state assi
ments, the product of the corresponding density matri
should be nonzero. A second condition put forward in R
@12#, namely, that the different density matrices should co
mute, was later shown to be too restrictive@13#. Necessary
and sufficient condition for compatibility of several densi
9-2
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CONDITIONAL QUANTUM DYNAMICS WITH SEVERAL . . . PHYSICAL REVIEW A 69, 022109 ~2004!
matrices turns out to be simple@14#: Their supports mus
share at least one state~the support of a density matrix is th
subspace spanned by all its eigenvectors with nonzero ei
values!.

In our setting the issue of compatibility of various sing
observer density matricesr@Ni(t)# is settled very naturally.
Indeed, the probabilityp@Na(t)# defined in Eq.~4! provides
a measure of compatibility of different sets of outcom
p@Na(t)#50 when records from different channels in the s
Na(t) are mutually contradictory. It is easy to see that t
condition is equivalent to the prerequisite compatibility, i.
the overlap of support@12–14#. Moreover,p@Na(t)# quanti-
fies this compatibility, at least in the multiple observer sett
we are about to investigate in more detail.

B. Conditional master equations

The evolution of the unconditional density matrix%(t) is
determined by the unconditional master equation, Eq.~1!.
We now derive master equations that describe the evolu
of the superobserver density matrixr@Na(t)#, and of the
density matrixr@Ni(t)# of observeri, conditioned on their
respective measurement results. Within the Markovian
proximation, the master equation for the single observer c
ditional density matrix has the form@5,7#

dr@Na~ t !#5dtL(r@Na~ t !#1MdNa(t)(r@Na~ t !#.
~9!

In our case of the superobserver that ‘‘single observer’’
access to all measurement recordsNa(t). The superoperato
MdNa(t) conditionsr@Na(t)# on present measurement r

sults dNa(t)5@dN1(t), . . . ,dNC(t)# that are obtained a
time t. It can be written as a sum of superoperators t
depend on the measurement results on individual chann
MdNa(t)5MdN1(t)1•••1MdNC(t) . Each superoperato

MdNi (t)
takes density operators to density operators and

pends on the particular measurement strategy impleme
in the measurement channeli. Examples of measuremen
strategies are point processes, such as photocounting o
tical fields, and diffusive processes, such as homodyne
heterodyne detection of optical fields. Als
MdNa(t)(r@Na(t)# is nonlinear inr@Na(t)# and linear in

the set of measurement resultsdNa(t). The nonlinearity
comes into play in Eq.~5! when we normalize the densit
matrix. The action of this superoperator onr@Na(t)# is a
generalization of the apparent ‘‘collapse of the wave fu
tion’’ experienced by the superobserver confined to
branchNa(t). For a derivation of the superoperatorsMdNi (t)

in terms of the projectorsPNi (t)
see the formalism of opera

tions and effects described in Refs.@15,16#.
When measurement resultsdNa(t) are ignored,%(t)

should follow the UME@Eq. ~1!#. In other words, the sum o
the superoperatorMdNa(t) over all possible strings of mea

surement resultsdNa(t) should vanish, that is,

(
dNa(t)

MdNa(t)(r@Na~ t !#50. ~10!
02210
n-

:
t
s
,

g

n

p-
n-

s

t
ls,

e-
ed

op-
or

-
e

We can also write down the master equation for the d
sity matrix r@Ni(t)# that observeri, who knows only his
own recordsNi(t), ascribes to the systemS. Using Eqs.~7!
and ~9! we obtain

dr@Ni~ t !#5dtL(r@Ni~ t !#1MdNi (t)
(r@Ni~ t !#. ~11!

Indeed, this equation has the same form as that of the su
observer Eq.~9!. The superoperatorMdNi (t)

depends only on

the measurement resultdNi(t) of observeri, and it is defined
as an average over all records of all other observers unkn
to him,

MdNi (t)
(r@Ni~ t !#

5 (
N

b

Ni (t)

p@N b
Ni (t)#

p@Ni~ t !#
MdN

b

dNi (t)(r@N b
Ni (t)#,

~12!

wheredN b
dNi (t) is any string of multiple channel measur

ment record that contains the particular measurement re
dNi(t) on channeli.

III. CORRELATIONS BETWEEN DIFFERENT
MEASUREMENT CHANNELS

We study correlations between measurement records
different measurement channels, say channelsi and j. It is
clear that in order to do so it is necessary to compare co
sponding recordsNi(t) and Nj (t). Therefore, we imagine
there is someone who has access to the records on both c
nels, or the two observers with access to channelsi and j
communicate with each other and share their measurem
records. Whatever the case is, we can think that there
~super!observer who has access to the two measurem
channels and whose string of records is@Ni(t),Nj (t)#. To
follow the line of thought of previous sections, we will in
stead consider the superobserver who has access to all
surement channels, and whose string of records contain
particular recordNi(t) on channeli, and the particular record
Nj (t) on channelj, i.e., his string of records isN g

Ni (t),Nj (t)

5@N1(t), . . . ,Ni(t), . . . ,Nj (t), . . . ,NC(t)#. Here the sub-
script g denotes a particular set of multiple channel reco
that contains recordsNi(t) and Nj (t) in channelsi and j,
respectively.

We define the average relative purity between the sta
ascribed toS by two such observersi and j as

Oi j ~ t !5 (
Ni (t),Nj (t)

(
N

g

Ni (t),Nj (t)
p@N g

Ni (t),Nj (t)#

3TrSr@Ni~ t !#r@Nj~ t !#

5 (
Ni (t),Nj (t)

p@Ni~ t !,Nj~ t !#TrSr@Ni~ t !#r@Nj~ t !#,

~13!
9-3
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wherep@Ni(t),Nj (t)# is the joint probability distribution for
recordsNi(t) andNj (t), given by

p@Ni~ t !,Nj~ t !#5 (
N

g

Ni (t),Nj (t)
p@N g

Ni (t),Nj (t)#. ~14!

We also introduce the average relative purityOi(t) between
the states ofS ascribed by the observeri and the superob
server, whose respective measurement records areNi(t) and
N b

Ni (t) , i.e., the particular recordNi(t) on channeli is con-
tained in the superobserver string of multiple chan
records,N b

Ni (t)5@N1(t), . . . ,Ni(t), . . . ,NC(t)#. Hereb de-
notes a particular set of superobserver records that con
the recordNi(t) in channeli. We define

Oi~ t !5 (
Ni (t)

(
N

b

Ni (t)
p@N b

Ni (t)#TrSr@Ni~ t !#r@N b
Ni (t)#.

~15!

Using Eqs.~7! and ~8! it is easy to check that this averag
relative purity equals the average purity of the state ascri
to S by observeri, and that it is also equal to the autocorr
lation Oii (t) introduced in Eq.~13!, namely,

Oi~ t !5Oii ~ t !5 (
Ni (t)

p@Ni~ t !#TrSr2@Ni~ t !#. ~16!

In other words, an observeri has no more information abou
the superobserver’s records than the information alre
contained in his own records.

A better measure of correlations between density matr
is fidelity @17#, which is defined as F(r i ,r j )
5$Tr@(Ar ir jAr i)

1/2#%2. This can be easily calculated in tw
dimensions:F(r i ,r j )5Tr(r ir j )12(detr idetr j )

1/2. Unfortu-
nately it is more difficult to compute for more general cas
and for this reason we will use in the following relative p
rity as a measure of correlations.

In order to make a quantative study of correlations
tween different measurement channels it will be conven
to work in the framework of stochastic differential mast
equations. We first simplify our notation: we will denote th
density matrix ascribed to the system by the superobse
who has measurement recordsN b

Ni (t) , as

r@N b
Ni (t)#[r~ t !, ~17!

and the density matrix of observeri, whose measuremen
record isNi(t), as

r@Ni~ t !#[r i~ t !. ~18!

Also, we will denote the measurement recordsN b
Ni (t) of the

superobserver, and his measurement resultsdN b
dNi (t) , which,

respectively, contain the measurement recordNi(t) and the
measurement resultdNi(t) on channeli, as

N b
dNi (t)[N~ t !,
02210
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dN b
dNi (t)[dN~ t !. ~19!

We emphasize again that, in the study of correlations,
consider the situation when the single channel measurem
record Ni(t) is contained in the superobserver recordsNb

5N b
Ni (t) . Similarly, when we study correlations betwee

measurement records on two different channelsi and j, we
consider the situation when the two single channel meas
ment recordsNi(t) and Nj (t) are both contained in the su
perobserver recordsNb5N b

Ni (t),Nj (t) .
The conditional master equation for the superobser

which conditions hisr(t) on current measurement resul
dN(t), can be upgraded to astochastic master equatio
~SME!. A SME is a conditional master equation plus a pro
ability distribution P@dN(t)# for the measurement result
dN(t). This probability distribution can be obtained from
Eq. ~4!. P@dN(t)# is a conditional probability to get curren
measurement resultsdN(t) provided that the measureme
records of the superobserver until timet areN(t), that is,

P@dN~ t !#[p@dN~ t !uN~ t !#5
p@dN~ t !,N~ t !#

p@N~ t !#
, ~20!

where we used Bayes rule. Herep@dN(t),N(t)# is the joint
probability of having measurement recordsN(t) until time t,
and of having measurement resultsdN(t) at time t. In the
Markovian approximationP@dN(t)# depends on the record
N(t) through the conditional density matrixr(t),

P@dN~ t !#5P@dN~ t !ur~ t !#. ~21!

The dependence of this probability distribution on the sup
observerr(t) leads to correlations between different me
surement channels we are going to explore using a se
SMEs describing the stochastic evolutions forr(t) and
r i(t). This set of stochastic master equations is given by

dr~ t !5dtL(r~ t !1MdN(t)(r~ t !, ~22!

dr i~ t !5dtL(r i~ t !1MdNi (t)
(r i~ t !, ~23!

P@dN1~ t !, . . . ,dNC~ t !ur~ t !#

5
TrSED PNa(t),dNa(t) rSED~ t1dt!

TrSED PNa(t) rSED~ t !
. ~24!

We refer to this set of equations as a multiple channels
chastic master equation~MCSME!.

We will use the above formalism to address questio
regarding correlations between measurements on diffe
channels.

What is the average correlation between the density
trix of a single observerr i and the superobserver’s densi
matrix r? We shall quantify this correlation by the avera
relative purityOi(t) defined in Eq.~15!. As a shorthand, we
will write it as Oi(t)5Trr i(t)r(t), where the overline
means the weighted average defined in Eq.~15!. This relative
purity is a measure of how different, on average, is
knowledge of the observeri from the knowledge he would
9-4
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CONDITIONAL QUANTUM DYNAMICS WITH SEVERAL . . . PHYSICAL REVIEW A 69, 022109 ~2004!
have had if he had access to the records of all the o
observers. He cannot know more about the stater(t) that the
superobserver ascribes to the system that he can infer
his own measurement record only. The extracted informa
can be measured by the average purity of the single obse
stateOii (t)5Trr i

2(t) @Eq. ~16!#. Even if the superobserve
density matrixr(t) had higher average purity, the avera
relative purityOi(t) would be equal to the single observ
purity, Oi(t)5Oii (t), as derived in Eq.~16!. This equality
will be illustrated with several examples in Secs. V and V
Oii (t) is maximal for measurements in a basis correla
with the pointer states@11#.

What is the average correlation between different sin
observer density matricesr i and r j? We shall quantify this
correlation by the average relative purityOi j (t) defined in
Eq. ~13!, which as a shorthand we write asOi j (t)
5Trr i(t)r j (t). In other words, how much do different ob
servers agree about the state of the system? In Sec. IV
will show that for an initial Schro¨dinger cat state made o
large amplitude coherent states~coherent states are perfe
pointer states in the model of zero-temperature quan
Brownian motion!, and for measurements in a basis of t
environment correlated with them, observers will, after
initial transient, reach full agreement,Oi j (t→`)51. Typi-
cally, as seen in the examples of Secs. V and VI, the ag
ment is not perfect but it gets better when the observ
measurement basis get closer to those environmental s
correlated to the pointer basis of the system. For resona
fluorescence from a two-level atom subjected to direct p
todetection ~see Sec. V! we find an anticorrelation,Oi j
,1/2. Each observer learns something about the state o
system but their estimates of the stater i(t) are anticorre-
lated. The two-level atom is very far from being classic
and, what is more, photodetection is very far from being
measurement in a basis correlated with the most predict
states.

IV. QUANTUM BROWNIAN MOTION

A. Correlation of the outcomes for pointer state measurements

In this section we consider the well-known model
quantum Brownian motion consisting of a harmonic oscil
tor ~the system! interacting with a reservoir of harmonic os
cillators ~phonons! with a position-position coupling. We
will restrict ourselves to the case of a zero-temperature
vironment. This model represents a damped harmonic o
lator. The self-Hamiltonian for the system isH5va†a,
where v is the frequency of the oscillator anda,a† are
bosonic annihilation/creation operators. Imagine that a se
observers perform homodyne detection measurements o
environment of phonons so that each of them gains infor
tion about the state of the system oscillator. Given the se
records of all those observers, the MCSME of the syst
oscillator is@18#

dr5dtS ara†2
1

2
a†ar2

1

2
ra†aD1(

i
@dNi2dNi~r!#

3S ~a1g!r~a†1g!!

Tr@~a1g!r~a†1g!!#
2r D , ~25!
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dr i5dtS ar ia
†2

1

2
a†ar i2

1

2
r ia

†aD1@dNi2dNi~r i !#

3S ~a1g!r i~a†1g!!

Tr@~a1g!r i~a†1g!!#
2r i D , ~26!

dNi~r!5h idt@R21Re2 ifTrra1Re1 ifTrra†1Trra†a#.
~27!

These equations for the conditional evolution of the dens
matrices of the system, written in the interaction picture re
resentation, are valid in the rotating-wave approximati
Here we use Itoˆ version of stochastic calculus. The fir
terms on the right-hand side~RHS! of Eqs.~25! and~26! are
of Lindblad form and describe damping and decoherence
to spontaneous emission of phonons. We have set the da
ing coefficient to 1. The second~stochastic! terms feed back
into the master equation information about the state of
system gained by observers. The coefficientg5R exp(if) is
the amplitude of the local oscillator in the homodyne det
tor @19#. For simplicity, we are assuming here that all obse
ers perform the same kind of homodyne detection, so that
amplitudesRi and phasesf i are all equal. We will lift this
restriction in later examples. The number of phonons
tected by observeri in an infinitesimal interval fromt to t
1dt is dNi(t)P$0,1%, with an average given by Eq.~27!
anddNidNj5d i j dNi . The efficienciesh i of different detec-
tors can be defined as the fractions of phonons monitored
particular detectors. In the phonodetection limit (R50), the
average detection rate Eq.~27! is proportional to the averag
occupation number. Whenever a phonon is detected (dNi
51 for anyi ) the occupation numbers inr are reduced by 1.
In the homodyne limit (R@1) the detection rates measu
the coherent amplitude Trr(e1 ifa1e2 ifa†) of the state of
the system.

To illustrate how different observers are gaining inform
tion about the system and how correlations between diffe
measurement channels arise in the process of continu
measurement we consider superpositions of large ampli
coherent states. According to the exact solution@20–22# co-
herent statesuz0&, such thatauz0&5z0uz0&, decay to the
ground state likeuz0 e2t&5uz& without producing any en-
tropy. At T50 they are the perfect pointer states of the qu
tum Brownian motion model@23#. The decay to the ground
state takes place on a time scale of the order of the dam
rate, which we have set to 1. In a subspace spanned
u1z& and u2z& a general density matrix is

r~ t !5
11A~ t !

2
u1z&^1zu1

12A~ t !

2
u2z&

3^2zu1C~ t !u1z&^2zu1C* ~ t !u2z&^1zu.

~28!

Substitution of this density matrix into Eq.~25!, and subse-
quent left and right projections onu6z& @24# give stochastic
differential equations forA(t) andC(t). C(t) decays to 0 on
a decoherence time scale which in our subspace ofu6z&
9-5
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DZIARMAGA, DALVIT, AND ZUREK PHYSICAL REVIEW A 69, 022109 ~2004!
5u6r exp(ic)& is given by 1/r 2. For initial r @1 this deco-
herence is much faster than damping and it takes place m
before the statesu6z& decay to the ground state. In the o
posite case ofr !1 the statesu6z& decay to the ground stat
before they can be distinguished by the environment. B
limits were considered in Ref.@20#. Coherent states with co
herent amplitudes6z that differ less than 1 cannot be di
tinguished. Here we concentrate on the distinguishable c
of r @1. In this limit we can self-consistently ignore dam
ing and focus on the decoherence and measurement pro
In the homodyne limit (R@r ), where detection rates are fa
as compared to the spontaneous emission~decoherence!
time, at any given time the correlators for the increme
dni[dNi2dNi(r) are

dni50,

dnidnj'd i j dNi'd i j h iR
2dt1O~R!. ~29!

In this limit the increments can be approximated bydni

5Ah iRdWi , wheredWi ’s are Gaussian Wiener increment
such thatdWi50 anddWidWj5d i j dt @6,7#. After introduc-
ing a variableB asA5tanhB, and translating to Stratonovic
convention, the superobserver’s equation forB reads

dB

dt
5h tanhB1(

i
Ah iu i~t!, ~30!

where we have defined a new time variablet54tr 2 cos2(f
2c) and h5( ih i . Hereu i are stochastic continuous func
tions of time, defined asdWi5u idt. These stochastic func
tions are white noises with correlators

u i~t1!u j~t2!5d i j d~t12t2!. ~31!

According to Eq.~30!, B initially performs a random walk
driven by the noises but once it diffuses into a posit
(tanhB511) or negative (tanhB521) domain, the deter-
ministic force h tanhB takes over and inevitably drivesB
towards positive or negative infinity. After the transient tim
t;1/h, A settles down atA561 which corresponds to th
pure stateu6z& @see the superobserver’s trajectoryA(t) in
Fig. 1#. By this time an observer who knows alldNi(t) can
tell whether the system oscillator is in the stateuz& or
u2z&, and attributes to the system the appropriate pure s
This happens also when the total efficiencyh is less than 1.

An observeri ascribes to the system a stater i conditioned
on his own recordsdNi(t) only. Since we want to study
correlations between the measurement records, the evolu
of r i is given by the MCSME@Eq. ~26!#. Taking the homo-
dyneR@r limit in the single observer case we get

dNi2dNi~r i !5@dNi2dNi~r!#1@dNi~r!2dNi~r i !#

'Ah iRdWi12h i rR~A2Ai !

3cos~c2f!. ~32!
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Just as for the case of the superobserver@Eq. ~25!#, substitu-
tion of the ansatz Eq.~28! into Eq. ~26! and neglecting any
O(1/R) terms, leads to the equation for the single obser
Bi ,

dBi

dt
5h i tanhBi1@h i tanhB2h i tanhBi1Ah iu i #

5h i tanhB1Ah iu i , ~33!

whereAi5tanhBi . The terms in the square brackets com
from the stochastic term in Eq.~26!. Note that the superob
server’sB appears in the evolution equation of theBi asso-
ciated with the single measurement channeli. This reflects
the fact that the single channel and multiple channel m
surement results are correlated in the MCSME@Eq. ~24!#.

Let us now study how the evolutions ofA according to the
superobserver and single observers are correlated. On
one hand, according to Eq.~30!, the superobserver evolutio
settlesA5tanhB at 61 after the transient timet;1/h. On
the other hand, the single observer evolution is given by
~33!, and correlations between the two evolutions en
through the first term in the most right-hand side of th
equation containing the superobserverA5tanhB. Once A
5tanhB561 is chosen, the deterministic drift term
h i tanhB on the RHS of Eq.~33! will inevitably force Ai
5tanhBi to make the same choice after the longer transi
time t;1/h i . Eventually all observers will settle down a
A5Ai561, and the average relative purities will be equ
to 1, Oi5Oi j 51 ~see the single realizations for two me
surement channelsi 51,2 in Fig. 1!.

In our example the observers finally find out which of t
two coherent states is the state of the system. It is poss
because the initial coherent states have large amplitudes6z
with uzu@1 so that the decoherence time is much sho
than the spontaneous emission time. In the opposite reg

FIG. 1. A single realization of the stochastic trajectoriesA(t)
~thick line!, A1(t) and A2(t) ~thin lines! for h150.7 and h2

50.3. The superobserver’sA(t) settles at11 aroundt'1, it is
followed byA1(t) after at delay'1. A2(t) after a long period of
indecision settles down at11 at t'5.
9-6
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CONDITIONAL QUANTUM DYNAMICS WITH SEVERAL . . . PHYSICAL REVIEW A 69, 022109 ~2004!
of uzu!1 the decoherence time is longer than the sponta
ous emission time, and the observers will not find out
state before it decays to the vacuum state.

B. Independence of the outcome distributions

To have a better feeling of the MCSME formalism w
consider the following example. There are two observei
51,2. The measurements by observer 2 affect the evolu
of the superobserver’s density matrixr. Since the environ-
ment is also monitored by observer 1, in principle, obser
1 may be able to identify perturbations ofr produced by
measurements of observer 2 and realize that there is an
observer monitoring the system. In Sec. II we gave a gen
argument that, as a direct consequence of the quantum
kov approximation, observer 2 cannot find out if there
another observer. Here we present a simple calculation w
illustrates this fact in our example of superposition of coh
ent states.

To begin with, note that Eq.~30! is equivalent to the fol-
lowing Fokker-Planck equation for the probability distrib
tion P(t,B) for B at timet @25#,

1

h

]P

]t
52

]

]B
tanh~B!P1

1

2

]2

]B2
P. ~34!

We can compare the following two situations.
~1! Observer 1 is the only observer orh250. His prob-

ability distribution evolves according to Eq.~34!. The initial
conditionP(0,B1)5d(B1) leads to the solution

P(1)~t,B1!5

expS 2
~B12h1t!2

2h1t D
A2ph1t

1

expS 2
~B11h1t!2

2h1t D
A2ph1t

.

~35!

~2! There is an observer 2 withh2@h1. In this limit,
where the perturbations by observer 2 are the strongest,
is most likely to suspect that the less efficient observe
could find out about the more efficient observer 2. The e
lution of B(t) is mainly conditioned upon the measureme
of observer 2. The multiple observerA settles at61 on a
time scale 1/h which is much faster than the time 1/h1 ob-
server 1 needs to find out about the system. The state o
system is settled without any influence of measurement
observer 1. Suppose that, with the probability 1/2, the m
tiple observer state tanhB511 was chosen.B1 evolves ac-
cording to Eq.~33! with a fixed tanhB511. The probability
distribution forB1 is

P1~t,B1!5

expS 2
~B12h1t!2

2h1t D
A2ph1t

. ~36!

Also with the probability 1/2, tanhB521 can be chosen
Now tanhB521 is fixed in Eq. ~33! and the probability
distribution is
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P2~t,B1!5

expS 2
~B11h1t!2

2h1t D
A2ph1t

. ~37!

As we do not know which superobserver’s state will be ch
sen, the two probabilities add to giveP(2)5P11P2 . It is
easy to check thatP(2)5P(1) in Eq. ~35!. The probability
distributions coincide, so observer 1 cannot find out if the
is any observer 2 even if observer 1 detects just 1%
phonons and the other more efficient observer detects 9
or almost all phonons.

V. TWO-LEVEL ATOM: DIRECT PHOTODETECTION

We want to contrast the quantum Brownian motion mo
with an example of a system with a small Hilbert space, su
as a driven two-level atom coupled to the radiation field,
which we do not expect perfect pointer states. In Appendi
we derive the MCSME for a two-level atom driven by a las
beam with frequencyv and whose emitted radiation is sub
jected to photodetection. It takes the form

dr52 i dt@vsx ,r#1dtS crc†2
1

2
c†cr2

1

2
rc†cD

1(
i

@dNi2dNi~r!#S crc†

Tr@crc†#
2r D , ~38!

dr i52 i dt@vsx ,r i #1dtS cr ic
†2

1

2
c†cr i2

1

2
r ic

†cD
1@dNi2dNi~r i !#S cr ic

†

Tr@cr ic
†#

2r i D , ~39!

dNi~r!5h idtTr@rc†c#. ~40!

The density matrixr of the atom is a 232 matrix

r5 1
2 @ I 1xsx1ysy1zsz#. ~41!

The lowering operator isc5(sx2 isy)/2, and the number of
photons detected in channeli betweent and t1dt is dNi
P$0,1% with an average proportional to the occupation nu
ber of the atom, see Eq.~40!, anddNidNj5d i j dNi . Follow-
ing each detection of a photon~any dNi51), the atom is
known to be in the ground state~the 21 eigenstate ofsz),
from where it is excited again by a laser beam through
Hamiltonian termvsx . The efficiencyh i of the detector
used by observeri is the fraction of photons which are de
tected by him.

When v@1 the most predictable states of the two-lev
atom aresx eigenstates, i.e., they are determined by
Hamiltonian vsx describing the excitations via the las
beam@26#. These states are far from perfect since they h
a nonzero initial rate of purity loss. Moreover, while eige
states ofsx are most predictable, they are not the most
fective in making an imprint on the environment~as real
pointer states should be@4,9,10#. In particular, the
9-7
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DZIARMAGA, DALVIT, AND ZUREK PHYSICAL REVIEW A 69, 022109 ~2004!
environment-system Hamiltonian does not preserve them
a consequence, we do not expect agreement between ob
ers even if they are measuring in a basis of the environm
correlated to thesx eigenstates of the atom. Direct photod
tection is a way to find out if the atom is in the ground sta
This state is complementary to the most predictable sta
That is why we expect the relative purity between observ
to be very poor. In fact we will find any two observers to
anticorrelated,Oi j ,1/2.

A. The vš1 limit

For v@1 Eqs. ~38! and ~39! can be solved rigorously
Suppose that no photons are detected for a certain perio
time, dNi(t)50. During this time the density matrixr in
Eq. ~41! evolves according to the deterministic part of E
~38!. The unitary self-evolution with the Hamiltonianvsx is
mixing y andz with the frequency 2v. It is convenient to use
the interaction picture, where

x5xint ,

y5yint cos 2vt2zint sin 2vt,
~42!

z5yint sin 2vt1zint cos 2vt,

and the variation in time ofxint ,yint ,zint is slow as compared
to v. When we substitute the density matrix Eq.~41! into the
deterministic part of Eq.~38!, use the interaction picture, an
average over one period of oscillation with frequencyv, we
will obtain the following equations@27#

dxint

dt
52

1

2
xint ,

dyint

dt
52

3

4
~12h!yint , ~43!

dzint

dt
52

3

4
~12h!zint .

Every time a photon is detected the superobserver den
matrix r is projected to the ground state. All the informatio
about the previous evolution ofr(t) is forgotten. Suppose
that a detection took place at timet50. Just after the detec
tion the initial conditions arex(01)50, y(01)50, and
z(01)521. Before the next detection happens,x,y,z
evolve according to Eqs.~42! and ~43!,

X~ t !50,

Y~ t !5e2(3/4)(12h)t sin 2vt, ~44!

Z~ t !52e2(3/4)(12h)t cos 2vt,

wheret is the time elapsed since the last photodetection. T
solution is valid until the next detection takes place. The n
detection att5td will bring r to the ground state again, from
where the system will be excited according tox5X(t2td),
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y5Y(t2td), z5Z(t2td). The probability that an observeri
will detect a photon betweent andt1dt after the last detec-
tion by any observer is

dNi@r~ t !#5dth i

11Z~ t !

2
. ~45!

The above argument can also be applied to Eq.~39!. Every
time an observeri detects a photon his stater i jumps to the
ground state, from where it is excited according to

Xi~ t !50,

Yi~ t !5e2(3/4)(12h i )t sin 2vt, ~46!

Zi~ t !52e2(3/4)(12h i )t cos 2vt.

The time t here is the time since the last detection by t
observeri.

B. Distribution of waiting times

In this example we shall see again that a single obse
cannot find out if there is any other observer. We will co
sider just two observersi 51,2 and we will derive the distri-
bution of waiting times~times between subsequent dete
tions! for observer 1. We will show that this distributio
does not depend onh2 so it is not sensitive to the presence
absence of any observer 2. Any higher order correlati
between detection times can be expressed by this distribu
of waiting times because every time a photon is detected
observer 1, the atomic state goes down to the ground sta
that any history before the detection does not affect evolu
that follows that detection. The distribution of waiting time
contains all the information observer 1 can possibly extr
from his measurements.

Suppose that observer 1 detects a photon at timet50.
What is the probabilityw1(t) that he will detect the nex
photon at timet5t ? If observer 1 were the only observe
so thath15h, then the answer would be

w1~t!5S h1

11Z1~t!

2 DexpS 2E
0

t

dt1h1

11Z1~t1!

2 D
'

h1

2
e2h1t/2 ~v@1!. ~47!

The first factor is the average detection rate Eq.~45!, and the
second one is the probability that no photon is detected
tween 0 andt. As it should be,w1(t) is normalized to unity.
To obtain the final expression forw1(t) in Eq. ~47! we have
neglected all terms which vanish forv@1 as well as fast
oscillating terms;cos 2vt.

If there is a second observer, then the detection rate
observeri depends not onza(t) but onz(t) @see Eq.~45!#. In
general there may ben50,1, . . . ,̀ detections by observer 2
between 0 andt. Every time there is a detection by observ
2 at t5t j , ( j 51, . . . ,n), z(t) jumps down to21. For
t j,t,t j 11 it evolves asz(t)5Z(t2t j ). The probability that
9-8



d
es

-

e

-
e
-

r
w

tri
o

o

sa
en
th
,
ry

b

-

e-

n

1
es

ime

is-

rver

0.

CONDITIONAL QUANTUM DYNAMICS WITH SEVERAL . . . PHYSICAL REVIEW A 69, 022109 ~2004!
there is no detection by observer 1 between times 0 ant,
given that there aren detections by observer 2 at the tim
t1 , . . . ,tn , is given by

Dn~ t1 , . . . ,tn ,t!5q2~ t1!q2~ t22t1! . . . q2

3~ tn2tn21!e2(h/2)(t2tn), ~48!

whereq2(t) is distribution of waiting times for observer 2
given that there are no detections by 1,

q2~t!'e2(h/2)t
h2

2
~12e2(3/4)(12h)t cos 2vt! ~v@1!,

~49!

and the factore2(h/2)(t2tn) is the probability that no detec
tions by any observer take place betweentn and t. The dis-
tribution of waiting times for observer 1, averaged over d
tections by observer 2, is given byDn multiplied by the
detection rate of observer 1 att, and averaged over all pos
siblen andt1 , . . . ,tn . Therefore the final expression for th
waiting time distributionf wait(t) for observer 1 in the pres
ence of detections by observer 2 is given by

f wait~t!5 (
n50

` E
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtnDn~ t1 , . . . ,tn ,t!

3
h1

2
@11Z~t2tn!#'

h1

2
e2(h1/2)t ~v@1!, ~50!

where, again, we have neglected terms which vanish fov
@1 and any fast oscillating terms. In Appendix B we sho
how to obtain this last formula. We conclude that the dis
bution of waiting times for observer 1 in the presence
detections by observer 2@Eq. ~50!# is the same as that for n
observer 2 present@Eq. ~47!#. The distribution of waiting
times for observer 1 is not sensitive to observer 2.

C. Average relative purity betweenr1 and r

Let us now find out how much does a given observer,
i 51, know about the state of the superobserver. To this
we will calculate the average relative purity between
single observer and the superobserver density matricesO1

5Trr1r. Imagine the following situation. Take an arbitra
instant of timet50 and callo1

(n)(t50)5Trr1(t50)r(t
50) the relative purity given that the last detection of o
server 1 took place att52t and there weren detections by
observer 2 betweent52t andt50. Then the average rela
tive purity O1 evaluated at the timet50 will be equal to the
t average~i.e., average over all possible initial times of d
tection by 1! of the relative purityo1

(n)(t50) given that
there were no detections by observer 1 betweent52t and
t50 and averaged over all the possible numbersn of detec-
tions by observer 2 and his detection timest1 , . . . ,tn . For
the sake of clarity, we now shift the time origin ast→t
1t, so that the last detection of 1 took place at time 0 a
we are interested in evaluatingO1 at time t. The unnormal-
ized probability distribution for no detections by observer
between 0 andt, andn detections by observer 2 at the tim
02210
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t1 , . . . ,tn is Dn(t1 , . . . ,tn ,t), given by Eq.~48!. The nor-
malizing factor for this distribution is

n15 (
n50

` E
0

`

dtE
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtn

3Dn~ t1 , . . . ,tn ,t !'
2

h1
~v@1!. ~51!

Given that the last detection by observer 1 took place at t
0 and the last detection by any observer happened at timetn ,
the relevant relative purity is

o1
(n)~ t !5Trr1~ t !r~ t !

5
1

2
1

1

2
e2(3/4)(12h1)te2(3/4)(12h)(t2tn) cos 2vtn .

~52!

This relative purity, when averaged with the probability d
tribution ~48!, gives

O15n1
21(

n50

` E
0

`

dtE
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtn

3Dn~ t1 , . . . ,tn ,t !o1
(n)~ t !

5
1

2
1

h1

2~322h1!
, ~53!

where we have neglected allO(1/v) terms.
On the other hand, the average purity gained by obse

1 can be calculated as follows. According to Eqs.~46!, the
purity at the time t after the last detection iso11(t)
5Trr1

2(t)5 1
2 1 1

2 exp@23
2(12h1)t#. The probability that there

was no detection between 0 andt is exp(2h1t/2). Therefore,
the average purityO11 is o11(t) averaged overt,

O115

E
0

`

dt e2(h1/2)to11~ t !

E
0

`

dt e2(h1/2)t

5
1

2
1

h1

2~322h1!
. ~54!

As expected from Eq.~16!, O11 coincides withO1 ~see Fig.
2!. Let us now comment on the limiting casesh150 and
h151. In the former case we getO1150.5, which corre-
sponds to no information gain by the observer (r1 is maxi-
mally mixed!. In the latter case we getO1151, which is
maximal gain of information, andr1 is pure.

D. Average relative purity Oij

The average relative purityO125Trr1r2 has contribu-
tions from the following two situations.

~1! The last detection by observer 1 took place at time
Between times 0 andt there weren>1 detections by ob-
server 2 at the timest1 , . . . ,tn . The last detection beforet
was made by observer 2 at timetn . According to Eqs.~44!,
the relative purity att is
9-9
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o12
(n)~ t !5Trr1~ t !r2~ t !

5
1

2
1

1

2
e2(3/4)(12h1)te2(3/4)(12h2)(t2tn) cos 2vtn .

~55!

The normalizing factor for the probability distribution is

n125 (
n51

` E
0

`

dtE
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtn

3Dn~ t1 , . . . ,tn ,t !'
2h2

h1~h11h2!
~v@1!, ~56!

and the averaged relative purity is

ō12
(1)5n12

21(
n51

` E
0

`

dtE
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtn

3Dn~ t1 , . . . ,tn ,t !o12
(n)~ t !

5
1

2
2

h1~h11h2!

h2~62h12h2!~72h224h1!
. ~57!

~2! The last detection beforet was made by observer
instead of observer 2, as in the case~1!. The description of
this second situation is the same as above, except tha
servers 1 and 2 are interchanged. In particular, the fina
sult for the relative purity reads

ō12
(2)5

1

2
2

h2~h11h2!

h1~62h12h2!~72h124h2!
. ~58!

FIG. 2. Average purityO1121/2 and average relative purit
O121/2 for an observer performing photodetection measureme
The initial condition is maximal lack of knowledge, i.e.,r(t50)
5r1(t50)5I /2. The superobserver’s efficiency ish50.6 and the
single observer one ish150.5. According to Eqs.~53! and~54! the
asymptotic value isO1(`)5O11(`)50.125. The stochastic trajec
tories are an average over 256 single realizations. The small
crepancy betweenO1 andO11 in the figure is an artifact of the finite
number of realizations used for calculating the averages.
02210
b-
e-

In general,h1Þh2 and the two situations are not equal
likely. Let us callp(1) the probability that case~1! happens;
clearly for case~2! we havep(2)512p(1). The probability
p(1) is given by p(1)5n12/n15h2 /(h11h2). The relative
purity averaged over the two situations is then

O125
h2

h11h2
ō12

(1)1
h1

h11h2
ō12

(2)

5
1

2
2

h1h2@622~h11h2!#

2~62h12h2!~322h1!~322h2!
. ~59!

In Figs. 3 and 4 we show simulations of the time evolution
the relative purityO12 for the caseh15h2 and h1Þh2.
Note that the average relative purity is manifestly less th
1/2: the single observer statesr1 and r2 are anticorrelated.
The reason for this anticorrelation can be explained as
lows. Suppose that the statesr1 ,r2 ,r are initially fully cor-
related~i.e., relative purity equal to 1!. Observer 1 is most
likely to have a detection when the superobserver’s stat
excited (z'11). The hypothetical positive correlatio
means that whenz'11, then alsoz1'11 and z2'11.
Suppose that a detection by observer 1 happens. The s
observerz and the single observerz1 jump down to21. The
observer 2 has no clue that there was a detection by obse
1. What is more, the superobserverz is close to21 so
observer 2 cannot detect a photon and jump toz2521. His
z2 remains close to11. Just after the detection the produ
zz1.0 but the productz1z2,0. This mechanism canno
makeO1,1/2 but it can and it does makeO12,1/2.

We have solved exactly the problem of correlations b
tween multiple measurement channels in the limit ofv@1.
This limit is sufficient to illustrate our ideas. However, th
exact solution for arbitraryv of the resonance fluorescenc

ts.

is-

FIG. 3. Average relative purityO1221/2 between two observer
performing photodetection measurements. Their initial condition
maximal lack of knowledge, i.e.,r1(t50)5r1(t50)5I /2. The ef-
ficiencies areh15h250.5. According to Eq.~59! the asymptotic
value of the relative purity is20.025. The stochastic trajectory i
an average over 256 single realizations.
9-10
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problem in Ref.@28# suggests that, with some extra wor
our formulas for average relative purities can be generali
exactly to arbitraryv.

VI. TWO-LEVEL ATOM: HOMODYNE DETECTION

As we saw in the preceding section, direct photodetec
is a way to find out if the atom is in the ground state. O
can also measure different quadratures of the two-level a
by performing homodyne detection on the radiation emit
from it @19#. In general, it is possible to measure the exp
tation value of the operator (x cosf2ysinf), wheref is the
phase of the local oscillator in the homodyne detector. T
kind of measurement tends to localize the state of the a
around the eigenstates of the operator (sx cosf2sy sinf).
The MCSME is~see Appendix A!

dr52 idt@vsx ,r#1dtS crc†2
1

2
c†cr2

1

2
rc†cD

1(
i

@dNi2dNi~r!#S ~c1g i !r~c†1g i
!!

Tr@~c1g i !r~c†1g i
!!#

2r D ,

~60!

dr i52 idt@vsx ,r i #1dtS cr ic
†2

1

2
c†cr i2

1

2
r ic

†cD
1@dNi2dNi~r i !#S ~c1g i !r i~c†1g i

!!

Tr@~c1g i !r i~c†1g i
!!#

2r i D ,

~61!

dNi~r!5h idt@Ri
21Rie

2 if iTrrc1Rie
1 if iTrrc†1Trrc†c#.

~62!

FIG. 4. Average relative purityO1221/2 between two observer
performing photodetection measurements. Their initial condition
maximal lack of knowledge, i.e.,r1(t50)5r1(t50)5I /2. The ef-
ficiencies areh150.7 and h250.3. According to Eq.~59! the
asymptotic value of the relative purity is20.022. The stochastic
trajectory is an average over 256 single realizations.
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Here g i5Ri exp(ifi) is the complex amplitude of the loca
oscillator of the detectori. We will eventually take the limit
Ri→`. We allow each observer to have his own homody
phasef i , so that they can measure different quadratur
i.e., they measure noncommuting observables~a related ex-
perimental realization of measurements of noncommut
observables in two channels in cavity QED was carried
in Ref. @29#!. The detector currents are proportional to E
~62!. The casef i50 corresponds to measurement of thex
quadrature andf i5p/2 to y quadrature. The largeRi limit of
Eq. ~60! is

dr52 i dt@vsx ,r#1dtS crc†2
1

2
c†cr2

1

2
rc†cD

1(
i

Ah idWi@cre2 if i1rc†e1 if i

2rTr~cre2 if i1rc†e1 if i !#, ~63!

wheredWi are Gaussian Wiener increments such thatdWi

50 anddWidWj5d i j dt. To derive the largeRi limit of Eq.
~61! we first split dNi2dNi(r i)5@dNi2dNi(r)#
1@dNi(r)2dNi(r i)#. In the largeRi limit the first term is
proportional toRiAh idWi , and the second term is propo
tional to Rih idtTr@c(r2r i)e

2 if i1(r2r i)c
†e1 if i#. The

largeRi limit of Eq. ~61! reads

dr i52 i dt@vsx ,r i #1dtS cr ic
†2

1

2
c†cr i2

1

2
r ic

†cD
1$Ah idWi1h idtTr@c~r2r i !e

2 if i

1~r2r i !c
†e1 if i#%@~cr ie

2 if i1r ic
†e1 if i !

2rTr~cr ie
2 if i1r ic

†e1 if i !#. ~64!

A. Average relative purity betweenr i and r

Unfortunately it is not possible to find analytic solution
to the above equations for all values of the efficienciesh i .
For small values of these efficiencies it is possible to wo
out various relative purities by a perturbative expansion
powers ofh i . For h i50, the conditional master equatio
@Eq. ~63!# is the unconditional master equation, which has
stationary solutionrss. In the limit v@1 it is equal torss
5I /2 or xss5yss5zss50. The full density matrix is per-
turbed from this stationary state by the noisesdWi , and the
magnitude of the perturbation grows withh i . We expandr
5rss1dr, the last term containing those perturbations. L
us write dr5(xsx1ysy1zsz)/2. We expandx as x5x(1)

1x(2)1•••, where x(1) is of order h i
1/2, x(2) is of order

h i
3/2, etc. Similar expansions are used fory and z. To first

order inh i
1/2 Eq. ~63! reads

dx(1)

dt
52

1

2
x(1)1(

i
Ah iu i cosf i ,

s
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dy(1)

dt
52

1

2
y(1)22vz(1)2(

i
Ah iu i sinf i ,

~65!
dz(1)

dt
52z(1)12vy(1).

These equations have a solution

x(1)~ t !5(
i

xi
(1)~ t !,

~66!

y(1)~ t !6 iz(1)~ t !5(
i

@yi
(1)~ t !6 izi

(1)~ t !#,

where

xi
(1)~ t !5Ah i cosf iE

2`

t

dt e2(1/2)(t2t)u i~t!,

~67!

yi
(1)~ t !6 izi

(1)~ t !52Ah i sinf iE
2`

t

dt e2(3/472iv)(t2t)u i~t!.

To leading order inh i
1/2’s the single observer equation~61! is

dxi
(1)

dt
52

1

2
xi

(1)1Ah iu i cosf i ,

dyi
(1)

dt
52

1

2
yi

(1)22vzi
(1)2Ah iu i sinf i , ~68!

dzi
(1)

dt
52zi

(1)12vyi
(1) .

These equations are solved by the already introdu
xi

(1) ,yi
(1) ,zi

(1) . To leading order inh i ’s the relative purity
Oi5Trr ir is

Oi[
1
2 1 1

2 @x(1)xi
(1)1y(1)yi

(1)1z(1)zi
(1)#

5 1
2 1 1

2 @xi
(1)xi

(1)1yi
(1)yi

(1)1zi
(1)zi

(1)#. ~69!

A straightforward calculation leads to the following statio
ary average relative purity:

Oi5
1
2 1h i@

1
2 cos2f i1

1
3 sin2f i #. ~70!

As we can see from Eq.~69! the average relative purity
coincides with the average purityOii . The latter is the high-
est for measurement basis correlated to the pointer s
basis of the system, i.e., whenf i50. Through this measure
ment one can find out most about the system. In Figs. 5
6 we plot the average relative purityO1 and the average
purity O11 for different values of the efficiencies and hom
dyne phases.
02210
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B. Average relative purity Oij

The average relative purityO125Trr1r2 is zero to lead-
ing order inh i . To get a nonzero average relative purity w
have to go one step further in the perturbative expansion
x, y, and z. The equations for the second-order terms t
follow from the single observer equation Eq.~64! are

FIG. 5. Average purityO1121/2 and average relative purit
O121/2 for an observer performing homodyne measurements.
efficiency ish150.1 and the homodyne phase isf150. According
to Eq. ~70!, which is valid for small efficiencies, the asymptot
value of the average relative purity and average purity isO121/2
5O1121/250.05. In the scale of the figureO1 andO11 practically
coincide. The stochastic trajectories are an average over 256 s
realizations.

FIG. 6. Average purityO1121/2 and average relative purit
O121/2 for an observer performing homodyne measurements.
efficiency ish150.5 and the homodyne phase isf150. We do not
expect Eq.~70! to hold for such a big efficiency. The stochast
trajectories are an average over 256 single realizations. The s
discrepancy betweenO1 andO11 in the figure is an artifact of the
finite number of trajectories used to calculate the averages.
9-12
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dxi
(2)

dt
52

1

2
xi

(2)1h i cos2f ixj
(1)2h i sinf i cosf i y j

(1) ,

dyi
(2)

dt
52

1

2
yi

(2)22vzi
(2)1h i sin2f i y j

(1)

2h i sinf i cosf ixj
(1) ,

dzi
(2)

dt
52zi

(2)12vyi
(2) . ~71!

Formal solutions of these equations are

xi
(2)~ t !5h iE

2`

t

dt e2(1/2)(t2t)

3@cos2 f ixj
(1)~t!2sinf i cosf i y j

(1)~t!#,
~72!

yi
(2)~ t !6 izi

(2)~ t !5h iE
2`

t

dte2(3/4)(t2t)62iv(t2t)

3@sin2 f i y j
(1)~t!2sinf i cosf ixj

(1)~t!#.

To the first nonvanishing order inh i the average relative
purity is

O125
1
2 1 1

2 @x1x21y1y21z1z2#

5 1
2 1 1

2 @x1
(1)x2

(2)1y1
(1)y2

(2)1z1
(1)z2

(2)#

1 1
2 @x1

(2)x2
(1)1y1

(2)y2
(1)1z1

(2)z2
(1)#. ~73!

We evaluate this expression in Appendix C. The result is

O125
1
2 1h1h2@cos2 f1 cos2 f21 4

9 sin2 f1 sin2 f2#.
~74!

The average relative purity is maximized when both obse
ers performx measurements (f15f250). We verified this
formula by numerical simulations usingh15h250.01. Be-
low, in Figs. 7 and 8, we plot the average relative purityO12
for different sets of homodyne phases and efficienciesh1
5h250.1. These efficiencies are beyond the range of va
ity of Eq. ~74!.

VII. CONCLUDING REMARKS

Let us summarize the results contained in this paper.
have studied continuous quantum measurement with sev
observers and we have demonstrated that it reduces to
‘‘single observer’’ case. The key problem of consistency
the sets of data acquired by different observers is then
duced to the probability that a given combination of data s
will be ever detected by the superobserver. We have app
the formalism to several examples of quantum optics as w
as to quantum Brownian motion. Observers gain informat
about the state of the system from their measurem
records. We have shown that observers gain most infor
tion about the system and they agree the most when
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measure in environmental basis most correlated to
pointer basis of the system.

Several questions regarding correlations between m
surement records of different observers were posed. We h
shown that the problem of consistency of sets of data
quired by different observers is reduced to the probabi
that a given combination of data sets will ever be detected
the superobserver. We have introduced average relative
rity to study correlations between measurement records
different observers. For the model of zero temperature qu
tum Brownian motion~which is equivalent to the model of
damped harmonic oscillator! coherent states are perfe
pointer states. The solution to Eq.~25! for an initial coherent
state remains pure and it is just a coherent state with de
ing amplitude. We have shown that for an initial Schro¨dinger

FIG. 7. Average relative purityO1221/2 between two observer
performing homodyne measurements. The efficiencies areh15h2

50.1 and the homodyne phases aref15f250. The stochastic
trajectory is an average over 256 single realizations.

FIG. 8. Average relative purityO1221/2 between two observer
performing homodyne measurements. The efficiencies areh15h2

50.1 and the homodyne phases aref15f25p/2. The stochastic
trajectory is an average over 256 single realizations.
9-13
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DZIARMAGA, DALVIT, AND ZUREK PHYSICAL REVIEW A 69, 022109 ~2004!
cat state (uz&1u2z&)/A2 made of large amplitude cohere
states, records of different observers performing meas
ments on the environment in a basis correlated with
pointer basis will eventually fully agree~as shown in Fig. 1!,
and the average relative purity will be equal to 1. For t
case when the most predictable states exist, but are not
predictable and are not imprinted on the environment~and,
in particular, do not commute with the interaction Ham
tonian!, such as the model of two-level atom resonance fl
rescence, the agreement between observers’ guess o
state of the system may only be partial, and it is even p
sible to obtain anticorrelation between measurement reco
as in the case of photodetection.
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APPENDIX A: DERIVATION OF THE TWO-LEVEL
ATOM PHOTODETECTION AND HOMODYNE

DETECTION MASTER EQUATIONS FOR MULTIPLE
MEASUREMENT CHANNELS

Let us assume a two-level atom that interacts with
electromagnetic field, which we shall consider as the en
ronment. We will split this environment into different partsi,
each of which has associated a detectori. For example,i may
denote different photon wave vectors. In the rotating-wa
approximation, the dipole interaction between the atom
the electromagnetic field is

V~ t !5 i(
i

~bi
†c2c†bi !, ~A1!

wherebi andc are annihilation operators for photons and t
atom, respectively. At every instant of timet, a new part of
the environment is interacting with the system. Indeed
localized photon wave packet arrives at the atom, intera
with it, and then flies away. Subsequently, a new wa
packet performs the same process. Imagine that at a g
instant of timet the combined state of the atom and the fie
is R(t)5r(t) ^ m, wherer is the density matrix for the atom
andm is that for the field, which we assume to be in vacuu
m5 ^ i i u0&^0u i . This series of idealizations are called th
quantum Markov approximation.

The evolution operator for a time intervaldt is U(t,t
1dt)5exp@(i(dBi

†c2c†dBi)#, where dBi(t)5bi(t)dt has
commutation relations

@dBi~ t !,dBj
†~ t !#5d i j dt ~A2!

that follow from the ~singular! commutation relations
@dbi(t),dbj

†(t8)#5d i j d(t2t8). The above commutation re
lation is of orderdt instead ofdt2 @7#, as one might have
naively expected. For this reason an expansion to first o
in dt of the evolution operator requires a second-order
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pansion in terms ofdBi anddBi
† . When ones discards all th

information contained in the environment~which is then
traced out! one gets an unconditional master equation for
system

dr52 idt@vsx ,r#1dt(
i

S crc†2
1

2
c†cr2

1

2
rc†cD .

~A3!

The sum overi just rescales the spontaneous emission rat
the atom. In the following we shall absorb that rescaling in
redefinition of time and set the spontaneous emission
to 1.

If the measurements on the environment are not igno
but kept, the evolution of the system is conditioned up
them. In the case of photodetection, for most of the ti
intervals no photons are detected. In this case of null res
the density matrix of the system evolves according to

drzero~ t !5Ozeror~ t !2r~ t !Tr@Ozeror~ t !#, ~A4!

Ozeror~ t !5dtS 2 i @H,r#2
1

2 (
i

$c†c,r% D , ~A5!

which is so constructed as to conserve the trace ofr under
the time evolution. When a photon is measured by any of
detectors, the system discontinuously jumps to the gro
state of the atom

drone~ t !5(
i

dNiS Ooner

dNi

2 f i D , ~A6!

Ooner~ t !5h icrc†dt. ~A7!

Here the incrementsdNiP$0,1% are dichotomic stochastic
processes with averagesdNi(r)5h idtTr@rc†c#, h i denotes
the fraction of the environment measured by detectori, and
f i is such that two conditions must be satisfied:~1! when
dr5drzero1drone is averaged over all recordsi, it must re-
duce to the unconditional master equation, and;~2!
Tr@drzero1drone#50. It then follows that f i

52h irTr(Ozeror)/dNi . Finally we get the superobserve
master equation for photodetection,

dr52 idt@vsx ,r#1dtS crc†2
1

2
c†cr2

1

2
rc†cD

1(
i

@dNi2dNi~r!#S crc†

Tr@crc†#
2r D . ~A8!

The superobserver unconditional master equation~A3! is
invariant under the transformationc→c1g i and H→H
2( i /2)( i(g i

!c2g ic
†), whereg i is a complex number@7#.

This symmetry is helpful for deriving other unravelings
the unconditional master equation, for example, the one
responding to homodyne detection. In this caseg i represents
the coherent amplitude of the classical field of the local
9-14



or
a

g

e

1
th
:

re-
rom

e

in-

gle
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cillator i. Introducing this symmetry into the photodetect
master equation one immediately obtains the homodyne m
ter equation, Eq.~60!.

APPENDIX B: CALCULATION OF THE DISTRIBUTION
OF WAITING TIMES

In this appendix we calculate the distribution of waitin
times f wait(t) for the model of resonance fluorescence from
two-level atom subjected to direct photodetection. It is giv
by Eq. ~50!,

f wait~t![ (
n50

` E
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtnDn~ t1 , . . . ,tn ,t!

3
h1

2
@11Z~t2tn!#, ~B1!

where we recall that

Z~t2tn!52e2(3/4)(12h)(t2tn) cos 2v~t2tn!, ~B2!

and thatDn is

Dn~ t1 , . . . ,tn ,t!5e2(h/2)(t2tn))
j 51

n
h2

2
e2(h/2)(t j 2t j 21)

3@12e2(3/4)(12h)(t j 2t j 21)

3cos 2v~ t j2t j 21!#, ~B3!

wheret050 is the time of the last detection by observer
Inserting this equation into the previous one, we see
when doing then time integrals only two terms will survive
one that stems from the product of all the 1’s inDn , and
another coming from the products of all the cosines@which
will therefore contain factors of the form cos2(2vtj)]. All
other terms in the expansion of the product inDn will vanish
upon integration. In thev@1 limit we can replace cos2(2vtj)
by 1/2. We then get

f wait~t!'
h1

2
e2(ht/2)(

n50

` E
0

t

dt1 . . . E
tn21

t

dtn

3F S h2

2 D n

2S 2
h2

4 D n

e2(3/4)(12h)t cos~2vt!G
5

h1

2
e2(ht/2)(

n50

` F 1

n! S h2t

2 D n

2
1

n! S 2
h2t

4 D n

3e2(3/4)(12h)t cos~2vt!G
5

h1

2
e2(h1/2)t1OS 1

v D . ~B4!
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APPENDIX C: CALCULATION OF THE RELATIVE
PURITY FOR THE TWO-LEVEL ATOM WITH

HOMODYNE DETECTION

In this appendix we derive Eq.~74! for the stationary
value of the average relative purity between two measu
ment channels for the model of resonance fluorescence f
a two-level atom subjected to homodyne detection.

We must calculate the different terms of Eq.~73!. Using
Eq. ~72! we have

xi
(1)~ t !xj

(2)~ t !5h jE
2`

t

dte2(1/2)(t2t)@cos2 f j xi
(1)~ t !xi

(1)~t!

2sinf j cosf j xi
(1)~ t !yi

(1)~t!#. ~C1!

Using Eq. ~66! and that dWidWj5d i j dt, it is easy to
show that xi

(1)(t)yi
(1)(t)5O(1/v), so we can discard

that term in the previous equation. Also,xi
(1)(t)xi

(1)(t)
5h i cos2fiexp@2(t2t)/2#. Hence

xi
(1)~ t !xj

(2)~ t !5h ih j cos2 f i cos2 f j . ~C2!

Also, xj
(1)(t)xi

(2)(t), which obtains from the interchang
i↔ j , is the same. On the other hand,

yi
(1)yj

(2)1zi
(1)zj

(2)5 1
2 ~yi

(1)1 izi
(1)!~yj

(2)2 izj
(2)!1H.c.

~C3!

To calculate this noise average, we make use of Eqs.~67!
and ~72!, and

u i~t!xi
(1)~t8!5Ah i cosf i e2(1/2)(t2t8)u~t2t8!,

u i~t!yi
(1)~t8!522Ah i sinf i e2(3/4)(t82t)u~t2t8!

3cos 2v~t2t8!, ~C4!

where the stochastic noisesu i are defined asdWi5u idt, and
u(t) is the step function. Performing the necessary time
tegrations and discardingO(1/v) terms, we get

yi
(1)yj

(2)1zi
(1)zj

(2)5 4
9 h ih j sin2 f i sin2 f j . ~C5!

Finally, the average relative purity between the two sin
observer density matrices reads

Oi j 5
1
2 1h ih j@cos2 f i cos2 f j1

4
9 sin2 f i sin2 f j #.

~C6!
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